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Abstract

Using a simple model, this paper attempts to theoretically explore the dynamics of

interaction between the epidemiological processes of the COVID-19 pandemic and the

macroeconomic processes which influence the non-pharmaceutical policy interventions

to control the pandemic. We show that convergence to a steady state where the

pandemic is under control requires specific form of policy interventions. A failure

to achieve this might result in either explosive dynamics of uncontrolled pandemic

and economic collapse or a limit cycle from Andronov-Hopf bifurcation, resulting in

repeated waves of resurgence in pandemic and very short-run fluctuations in economic

activities. Broad stylized empirics of the pandemic resembles the outcome from the

simple model.

Keywords: COVID-19, health, lockdown, stability, Andronov-Hopf bifurcation, policy

intervention .
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1 Introduction

COVID-19 is a highly infectious disease, caused by the SARS-Cov-2 virus, which is

often transmitted by asymptomatic individuals (World Health Organization 2020a).

It was initially detected in the Wuhan province of China but quickly spread to the

rest of the world. The World Health Organization declared this to be a global pan-

demic on March 11, 2020 (World Health Organization 2020b). The rapid progress of

the pandemic since then has also led to the emergence of a large literature on for-

mal mathematical models of the dynamics of COVID-19 pandemic (see, for instance,

Thomas, Sturdivant, Dhurandhar, Debroy & Clark 2020, Anirudh 2020, Ndaïrou,

Area, Nieto & Torres 2020, Ivorra, Ferrández, Vela-Pérez & Ramos 2020, Kucharski,

Russell, Diamond, Liu, Edmunds, Funk, Eggo, Sun, Jit, Munday, Davies, Gimma,

van Zandvoort, Gibbs, Hellewell, Jarvis, Clifford, Quilty, Bosse, Abbott, Klepac &

Flasche 2020, Badr, Du, Marshall, Dong, Squire & Gardner 2020). Many of these

models owe their origins to the mathematical epidemiological models, described, for

instance, by Brauer, Castillo-Chavez & Feng (2019). These models divide the total

population into categories such as susceptible to infection (S), exposed to infection

(E), infected (I), quarantined (Q), recovered from infection (R) apart from those who

die due to diseases such as COVID-19. This gives rise to classes of epidemiological

models such as the SIR, SEIR, SIQR etc.

In the absence of a effective vaccine to control the pandemic, non-pharmaceutical

policy interventions have emerged as important tools to control the spread of the pan-

demic. These non-pharmaceutical interventions, however, have implications beyond

the ones which are usually included in the traditional epidemiological models. For

instance, an important aspect of the non-pharmaceutical policy interventions to con-

trol the COVID-19 pandemic has been their impact on the economic activities. Many

of these interventions, like travel restrictions or restrictions on economic activities

(including lockdowns, restrictions on public transport and limits on public gather-

ings etc.) have adversely affected economic indicators like employment rates. To

understand the progress of the pandemic and the effectiveness of the policy response

to control it, we need to understand the dynamics of the interaction between the

epidemiological and the macroeconomic processes. The policymakers, however, are

expected to respond not only to the pandemic, but also to the adverse economic

impact of a combination of the pandemic as well as the non-pharmaceutical policy

interventions, which affect the livelihood of the citizens in the affected countries. This

is an area which has been relatively less explored in the formal mathematical litera-

ture on COVID-19 pandemic.1 The current paper presents a preliminary attempt to

1There has been some recent literature in macroeconomics which attempts to analyze the eco-

nomic impact of the pandemic and restrictive policy responses in a neoclassical or New Keynesian

framework; see, for instance Guerrieri, Lorenzoni, Straub & Werning (2020) and Eichenbaum, Rebelo

& Trabandt (2020). This line of literature, however, does not explicitly incorporate the epidemio-

logical dynamics of the pandemic. Instead it considers the pandemic as an exogeneous shock, and

2



address this concern.

The broad stylized facts on the progress of the pandemic reflects the outcome of

this interaction between the epidemiological and economic processes. We find that the

progress has varied from country to country. The policy interventions have managed

to control or stabilize the spread of the pandemic in some countries whereas in some

countries, it has generated waves or cycles of transmission. For instance, in Italy

(which was one of the earliest countries to suffer a severe wave) and New Zealand,

the non-pharmaceutical policy interventions have succeeded so far in stabilizing the

number of daily new cases and the number of actively infected persons after an initial

peak in outbreak (figure) 1). In other countries like Australia, Israel, Japan, Serbia,

Spain and Vietnam, there have been multiple waves of outbreak (as represented by the

number of daily new cases or the number of persons actively infected with COVID-19,

see figure 2). In many of these countries, re-emergence of the outbreak has often been

accompanied with gradual lifting of restrictions on economic activities which were

earlier put into place to control the pandemic.

(a) Daily new cases in Italy (b) Daily new cases in New Zealand

Figure 1: Effective control of pandemic

Source: World Health Organization COVID-19 Dashboard

In the following sections, we attempt to theoretically explore the dynamics

of interaction between the epidemiological process of progress of the pandemic and

the macroeconomic processes. We begin with a simple general model of interaction

between the epidemiological and macroeconomic processes in section 2, followed by

a more specific model. We discuss the results and comparative dynamics from the

model in section 3, and conclude in section 4.

therefore, fails to incorporate the dynamics of the interaction between the epidemiological and the

macroeconomic processes.
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(a) Daily new cases in Australia (b) Daily new cases in Israel

(c) Daily new cases in Japan (d) Daily new cases in Serbia

(e) Daily new cases in Spain (f) Daily new cases in Vietnam

Figure 2: Multiple waves

Source: World Health Organization COVID-19 Dashboard
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2 The Model

2.1 Basic Setup

Consider a general model of a closed economy before it is affected by the pan-

demic. The aggregate output per unit of effective labor at time t, y ∈ ℜ+, grows

according to the following rule:

ẏ

y
= f (y) , f : ℜ+ → ℜ+, f (0) > 0, f ′ (y) < 0 (1)

where f is continuously differentiable. Once the population is hit by COVID-19

pandemic, the normal economic activities are adversely affected, both due to the

pandemic itself and due to policy-induced restrictions on economic activities to control

the spread of infections. The extent of the adverse impact depends on the progress of

the pandemic. We formalize this as follows. Let the proportion of population actively

affected by COVID-19 be represented by i ∈ ℜ+. This leads to a modification of (1)

as follows:

ẏ

y
= αf (y, i) , f : ℜ+ ×ℜ+ → ℜ+, f (0, 0) > 0, fy < 0, fi < 0 (2)

where f is continuously differentiable and α > 0 is a speed of adjustment parameter.

fi depends, among other things, on the policy environment. The more quickly the

policymaker responds to the spread in the pandemic with restrictions on economic

activities, higher will be the sensitivity of economic activities to the rate of infection

(resulting in a larger negative value of fi.)

Next, we turn our attention to the dynamics of spread of COVID-19. The

dynamics of pandemics such as COVID-19 are described by a class of mathematical

models described, for instance by Brauer et al. (2019). These models divide the total

population into categories such as susceptible to infection (S), exposed to infection

(E), infected (I), quarantined (Q), recovered from infection (R) apart from those who

die due to diseases such as COVID-19. This gives rise to classes of epidemiological

models such as the SIR, SEIR, SIQR etc. However, in the absence of reliable evidence

on whether those infected with COVID-19 develop resistance, we here consider a

simpler model of infection dynamics. At low rates of infection, the infected can easily

be identified, quarantined and prevented from infecting others. Despite being highly

infectious, COVID-19 so far has a relatively high recovery rate, unlike say, Ebola or

SARS-2003. This means that as long as the proportion of population affected with

COVID-19 remains low, the existing healthcare system in any country can ensure

that the infected persons recover without infecting others. However, with an increase

in the proportion of infected people, it is more likely for the infected persons to

come in contact with others and spread the infection (see, for instance, Shen & Bar-

Yam 2020).2 This can lead to an exponential growth in the transmission of the disease.

2In the long-run, for many diseases this process might be reversed by development of herd im-

munity; however, this argument is not applicable when one is in the middle of the pandemic. In
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The spread of infection is further helped by normal economic activities. Economic

activities increase the possibilities of the infected persons coming into contact with

uninfected persons, positively affecting the proportionate rate of growth of infection.

This might be represented in the form of the following differential equation:

i̇

i
= βg (y, i) , g : ℜ+ ×ℜ+ → ℜ+, g (0, 0) < 0, gy > 0, gi > 0 (3)

where g is continuously differentiable and β > 0 is a speed of adjustment parameter.

gy is the sensitivity of the rate of infection to increase in economic activity.

Equations (2) and (3) might be considered together as a system of differential

equations, representing the dynamic interaction between the economic activities and

the spread of infection in the economy. We write it below for clarity:

ẏ = αf (y, i) y

i̇ = βg (y, i) i
(4)

The dynamical system represented by (4) belongs to the broad class of ‘predator-

prey’ or ‘Kolmogorov-Lotka-Volterra’ class of models, originally formulated by Lotka

(1925) and Volterra (1927) in a biochemical and ecological application respectively,

and later on generalized by Kolmogorov (1936), Freedman (1980, chapter 5), Huang &

Zhu (2005), Mukherji (2005) and Datta (2016).3 According to the conventions of the

literature on the predator-prey class of models, output per unit of effective labor, or

the proxy for the level of economic activies might be interpreted as the prey whereas

the proportion of infected persons might be interpreted as the predator. We should

point out here that in specifying the general dynamical system in (4) we have not

imposed any additional restrictions other than the ones required to describe our story

of the emerging pandemic. In particular, we have not imposed any restrictions on the

second and higher order derivatives of f and g so far.

2.2 Steady states and local stability

It is easy to see that the dynamical system represented by (4) has four steady

states: (a) Trivial Equilibrium E1 : (0, 0), where both economic activities and in-

fections collapse to zero; (b) ‘Good Health Equilibrium’ E2 : (ȳ2, 0), where eco-

nomic activities can continue with no infected persons; (c) Non-Trivial Equilibrium

E3 : (ȳ3, ī3), where economic activities continue with a certain proportion of pop-

ulation remaining infected; and (d) ‘Bad Equilibrium’ E4 : (0, ī4), where economic

activities collapse even as a certain proportion of population remain infected. We

addition, cases of re-infection of COVID-19 have been reported, which makes emergence of herd

immunity doubtful even in the long-run.
3In fact, we note that the specification of g (0, 0) > 0 marks a departure of our model from the

general form discussed in Mukherji (2005).
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note that in general, multiple equilibria are possible only for the type E3. Next, we

propose the following:

Proposition 1. f(y, i) = 0 is downward-sloping and intersects the y-axis and the

i-axis at ȳ2 and î respectively; g(y, i) is downward-sloping and intersects the y-axis

and the i-axis at ŷ and ī4 respectively; ȳ2, ŷ, ī4, î ∈ ℜ+.

Proof.
di

dy

∣

∣

∣

∣

f(y,i)=0

= −
fy

fi
< 0 and

di

dy

∣

∣

∣

∣

g(y,i)=0

= −
gy

gi
< 0 (given fy, fi < 0 and

gy, gi > 0 from (2) and (3)), i.e. both f(y, i) = 0 and g(y, i) = 0 are downward-sloping.

Further, given that f(0, 0) > 0 and fy, fi < 0, from continuous differentiability of

f it follows that ∃ ȳ2 ∈ ℜ+ ∋ f(ȳ2, 0) = 0, and ∃ î ∈ ℜ+ ∋ f(0, î) = 0, i.e.

f(y, i) = 0 intersects y and i axes in the non-negative quadrant. Similarly, given

that g(0, 0) < 0 and gy, gi > 0, from continuous differentiability of g it follows that

∃ ŷ ∈ ℜ+ ∋ g(ŷ, 0) = 0 and ∃ ī4 ∈ ℜ+ ∋ g(0, ī4) = 0, i.e. g(y, i) = 0 intersects y and i

axes in the non-negative quadrant.

Corollary 1.1. For the dynamical system represented by (4), E1, E2 and E4 will

always exist in the non-negative quadrant.

Proof. Follows from proposition 1.

Proposition 2. (ŷ − ȳ2)(̂i− ī4) > 0 is a sufficient condition for E3 ∈ int ℜ2
++.

Proof. (ŷ − ȳ2)(̂i − ī4) > 0 ⇔ either ŷ > ȳ2 and î > ī4 or ŷ < ȳ2 and î < ī4 ⇔

f(y, i) = 0 and g(y, i) = 0 must intersect each other at least once inside the non-

negative quadrant. Hence it follows that there must be at least one interior non-trivial

equilibrium represented by E3.

Proposition 3. For the dynamical system represented by (4), the Trivial Equilibrium,

E1 is a saddle-point; the ‘Good Health Equilibrium’, E2 is either locally stable or

saddle-point; and the ‘Bad Equilibrium’, E4 is either saddle-point or locally unstable.

Proof. The jacobian of the dynamical system represented by (4) at the trivial equi-

librium, E1 is given by

J1 =

[

αf (0, 0) 0

0 βg (0, 0)

]

(5)

det(J1) = αβf (0, 0) g (0, 0) < 0. Hence E1 is always saddle-point. Similarly, at ‘Good

Health Equilibrium’, E2, the jacobian is given by

J2 =

[

αfyȳ2 αfiȳ2

0 βg (ȳ2, 0)

]

(6)

For 0 < ȳ2 < ŷ ⇔ g (ȳ2, 0) < 0, we have det(J2) = αβfy ȳ2g (ȳ2, 0) > 0 & trace(J2) =

αfyȳ2 + βg (ȳ2, 0) < 0, i.e. E2 is locally stable. For ȳ2 > ŷ > 0 ⇔ g (ȳ2, 0) > 0, we
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have det(J2) < 0, i.e. E2 is a saddle-point. Finally, at the ‘Bad Equilibrium’, E4, the

jacobian is given by

J4 =

[

αf (0, ī4) 0

βgy ī4 βgi ī4

]

(7)

For 0 < ī4 < î ⇔ f (0, ī4) > 0, we have det(J4) = αβgi ī4f (0, ī4) > 0 & trace(J4) =

αf (0, ī4)+ βgi ī4 > 0, i.e. E4 is locally stable. For ī4 > î > 0 ⇔ f (0, ī4) < 0, we have

det(J4) < 0, i.e. E4 is a saddle-point.

We might note from above discussion that the ‘Good Health Equilibrium’, E2

might not always be attainable, in case the dynamics of the epidemiological process

turns it into a saddle-point. In this case, the solution cannot converge to a steady

state with no infection. However, without placing any additional restrictions on the

higher order derivatives, we cannot make any further conclusion about the uniqueness

or stability of the interior non-trivial equilibria. For this, we now turn to an example

with specific functional forms.

2.3 Special Case: When f and g are linear in y and i

We consider a special case of the generalized system we had earlier set up in (4),

where f and g are both linear functions of y and i as follows:

ẏ = α (1− ηy − κi) y

i̇ = β (θy + γi− 1) i
(8)

We should point out here that κ and θ are the two key variables which might be influ-

enced through policy interventions. The policymaker might face a tradeoff between

meeting the public health objective of controlling the pandemic and the economic ob-

jective of maintaining economic activities. κ is an indicator of the relative emphasis

placed by the policymaker on public health. Higher κ might mean that the policy-

maker places a greater emphasis on public health objectives vis-à-vis the economic

objectives, and is quick to respond to the spread of infections with restrictions on eco-

nomic activities. θ, on the other hand, indicates the effect of economic activities on

transmission of the virus. This might largely depend on epidemiological factors (like

how infectious the disease is); however, θ might be controlled to an extent through

policy measures with large-scale use of safety measures including masks, sanitizers,

provisions for social or physical distancing of workers in the workplaces etc. η and γ,

on the other hand, represent macroeconomic and epidemiological processes which, at

least in the short-run within the time-period of progress of the pandemic, are largely

beyond the control of policy interventions.

The dynamical system represented by (8) will have four steady states: (a) Trivial

equilibrium E1 : (0, 0); (b) ‘Good Health Equilibrium’ E2 :

(

1

η
, 0

)

; (c) Non-trivial
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Equilibrium E3 :

(

κ− γ

κθ − γη
,

θ − η

κθ − γη

)

; and (d) ‘Bad Equilibrium E4 :

(

0,
1

γ

)

. Note

that with the imposition of linearity, now f(y, i) = 0 and g(y, i) = 0 can intersect

each other at most once in the non-negative quadrant; in other words, there can

be at most one instance of the non-trivial equilibrium, E3, inside the non-negative

quadrant. In line with proposition 1.1, E1, E2 and E4 will always exist in the non-

negative quadrant Re+ × ℜ+. In addition, the non-trivial equilibrium, E3 will lie in

the interior of positive quadrant ℜ+ ×ℜ+ provided

(κ− γ) (θ − η) ≥ 0 (9)

There can be at most one such equilibrium. In other words, given the assumptions

in the setup of (8) there will exist at least three, and at most four economically

meaningful equilibria.

We represent, through phase diagrams, the dynamical system represented by (8).

From the perspective of the local stability of the steady states, we can identify four

distinct cases. These are shown below in figure 3.4

Next, we note the following about the stability properties of the steady states

for the dynamical system represented by (8):

Proposition 4. The Trivial Equilibrium, E1 is always a saddle-point.

Proof. The jacobian at E1 is given by

A1 =

[

α 0

0 −β

]

(10)

det(A1) = −αβ < 0 ⇒ E1 is a saddle-point.

Proposition 5. The ‘Good Health Equilibrium’, E2 is saddle-point for θ > η (case 1

& 4 of figure 3) and locally stable for θ < η (case 2 & 3).

Proof. The jacobian at E2 is given by

A2 =







−α −
ακ

η

0 β
θ − η

η






(11)

det(A2) = −αβ
θ − η

η
R 0 for θ ⋚ η, and trace(A2) = −α+ β

θ − η

η
< 0 for θ < η. In

other words, E2 is saddle-point for θ > η and locally stable for θ < η.
4We should note here that figure 3c has been drawn with the assumption of κθ < γη, i.e. ẏ/y = 0

is steeper than i̇/i = 0. Alternate scenario where κθ > γη would make ẏ/y = 0 flatter than i̇/i = 0,

but will not change the stability properties of the steady states inside ℜ+ × ℜ+ as long as γ < κ

and θ < η, specifying the relative positions of the y and the i intercepts. Same argument might be

made for case 3d, drawn with the assumption of κθ > γη, making ẏ/y = 0 flatter than i̇/i = 0.

Alternate assumptions about the relative slopes of the curves will not affect the stability properties

of the steady states inside the non-negative quadrant as long as the relative intercepts remain the

same.
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(a) Case 1: κ > γ, θ > η (b) Case 2: κ < γ, θ < η

(c) Case 3: κ > γ, θ < η (d) Case 4: κ < γ, θ > η

Figure 3: Four cases

As we noted earlier, θ depends on a combination of epidemiological factors

and policy interventions. The policymaker interested in attaining the ‘Good Health

Equilibrium’ with no infections, might attempt to reduce θ through facilitating safety

practices like use of masks, sanitizers, physical distancing of workers at workplaces

etc. However, in case of a particularly aggressive epidemic due to the infectious nature

of the virus itself, it might not be possible to reduce θ beyond a certain level. In this

case, it will not be possible for the policymaker to pursue policies to attain the ‘Good

Health Equilibrium’.

Let us now turn our attention to the non-trivial equilibrium, E3. We recall

from (9) that E3 ∈ int ℜ2
++ under two conditions: case 1 (figure 3a) where κ > γ &

θ > η and case 2 (figure 3b) where κ < γ & θ < η. Next, we note the following:

Proposition 6. In case 2 (figure 3a) where κ < γ & θ < η, the non-trivial equilibrium

E3 ∈ int ℜ2
++, is saddle-point.

Proof. The jacobian at E3 is given by

A3 =







−αη
κ− γ

κθ − γη
−ακ

κ− γ

κθ − γη

βθ
θ − η

κθ − γη
βγ

θ − η

κθ − γη






(12)
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det(A3) = αβ (κθ − γη)

(

κ− γ

κθ − γη

)(

θ − η

κθ − γη

)

and trace(A3) = −αη
κ− γ

κθ − γη
+

βγ
θ − η

κθ − γη
. In case 2, it is clear that det(A3) < 0, i.e. E3 is saddle-point.

Corollary 6.1. In case 1 (figure 3a) where κ > γ & θ > η, the non-trivial equilibrium

E3 ∈ int ℜ2
++ undergoes a non-degenerate Andronov-Hopf bifurcation for a critical

value of the speed of adjustment parameter, β at β̂. E3 is locally stable ∀ β < β̂.

Proof. In case 1, it is clear that κθ − γη > 0 ⇔ det(A3) > 0. Further, defining

β̂ =
αη (κ− γ)

γ (θ − η)
(13)

we have trace(A3) < 0 ∀ β < β̂. Further, while perturbing β through β̂, we find that

trace(A3) = 0 at β = β̂ and
∂trace(A3)

∂β
= γ (θ − η) > 0, i.e. the derivative exists,

is smooth and differentiable. This satisfies both the existence and the transversality

condition for the existence of a non-degenerate Andronov-Hopf bifurcation.

Proposition 7. The ‘Bad Equilibrium’, E4 is either saddle-point or locally unstable.

Proof. The jacobian at E4 is given by

A4 =







α (γ − κ)

γ
0

βθ

γ
β






(14)

det(A4) = αβ
γ − κ

γ
and trace(A4) =

α (γ − κ)

γ
+ β. It follows that for γ < κ ⇔

det(A4) < 0, while for γ > κ ⇔ trace(A4) > 0, i.e. E4 is either saddle-point or locally

unstable.

To summarize, the dynamical system represented by (8) has four steady states,

out of which the Trivial Equilibrium, E1, is always a saddle-point; the ‘Good Health

Equilibrium’, E2, is saddle-point in case 1 and 4, and locally stable in case 2 and 3; the

non-trivial equilibrium, E3 is saddle-point in case 2 and might be stable or unstable

in case 1 where it undergoes an Andronov-Hopf bifurcation; the ‘Bad Equilibrium’ is

either saddle-point or locally unstable.

We demonstrate these possibilities with a numerical example.5 Consider the fol-

lowing parameter configuration: γ = 1.3; θ = 1.5; κ = 10; η = 1.2; α = 1. The

steady states will then be at E1 : (0, 0), E2 : (0.8333, 0), E3 : (0.6473, 0.0223) and

E4 : (0, 0.7692). Starting from an initial point of (0.8, 0.1), we find that the solution

converges to the non-trivial equilibrium for low values of β, but at β = 26.7692 we

5All numerical analyses in this study are performed using Matlab version R2018a (9.4.0.813654).
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find that E3 undergoes a non-degenerate Andronov-Hopf bifurcation leading to emer-

gence of limit cycles. This is shown using time-series and phase diagrams in figure 4

below.
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(a) Time-series: β = 26
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(b) Phase diagram: β = 26
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(c) Time-series: β = 26.7692
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(d) Phase diagram: β = 26.7692

Figure 4: Time-series and phase diagram of convergence & limit cycles

Cyclical possibilities from Andronov-Hopf bifurcation are indicative of waves of

infection and economic downturns, similar to the empirical stylized facts we saw in

figure 2. Consider a situation where the pandemic arrives in a country resulting in

growth of infections. Let the proportion of population which is infected, i grow at a

speed (represented by β) such that the non-trivial equilibrium undergoes Andronov-

Hopf bifurcation. The spread of infections force the policymakers to put in place

restrictions on economic activities like travel restrictions, lockdowns etc. resulting in

a reduction in the growth of economic activities, y. A reduction in the growth of y,

from the equation of motion for i, eventually controls the growth rate of i, leading

to a temporary halt in the spread of the pandemic. However, the reduction in the

growth of economic activities, along with a temporary halt in the spread of the pan-

demic, induces the policymaker to lift some of the restrictions placed earlier, in order
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to boost economic activities once again. This eventually leads to a turnaround in

the economic downturn, which in turn, once again creates conditions for the begin-

ning of another wave of infections. Logically, this mechanism is similar to the classic

predator-prey type of dynamics described by the Kolmogorov-Lotka-Volterra frame-

work, which might result in repeated waves of infection interspersed with phases of

economic downturns.

3 Comparative Dynamics and Policy Implications

In this section, we explore the dynamic effect of changes in the parameters on

the solutions. In particular, we consider the effect of changes in κ and θ, which to an

extent, might be influenced by policy.

We note, first of all, that the attainment of the ‘Good Health Equilibrium’ (E2)

might not always be possible. We noted earlier that E2 is locally stable only if θ < η.

Policy interventions like use of safety measures at workplace and other public places

might reduce θ to some extent, but in case of a highly infectious disease like COVID-

19, this might not be adequate to reduce θ sufficiently so as to satisfy the stability

condition. If this is the case, then the policy interventions must look beyond attempts

to attain E2.

If θ > η, so that attainment of E2 is not dynamically feasible, then the policy-

maker will have to turn the attention to E3, the next best scenario. Note that in this

case, one is either in case 1 (if κ > γ) or case 4 (if κ < γ) of figure 3. The infections

explode in case 4, so to avoid explosion in infections κ need to be kept higher than γ.

In other words, the non-pharmaceutical policy interventions to control the pandemic

must defeat the natural growth parameter of the pandemic represented by γ.

Even if κ > γ to ensure that the non-trivial equilibrium, E3 exists in the positive

quadrant, this might not be enough. We need to further ensure that it is stable so that

the solutions converge to it. This requires that the speed of adjustment of infection

growth rate, β is lower than β̂ given by (13). Higher the β̂, higher are the possibilities

of the solutions converging to the non-trivial equilibrium E3 (i.e. avoiding explosive

growth in infections). We note that

∂β̂

∂κ
=

αη

γ (θ − η)
> 0 (15)

∂β̂

∂θ
= −

αη (κ− γ)

γ (θ − η)2
< 0 (16)

In other words, convergence of infections as well as economic activities to E3 requires

a combination of policy interventions to increase κ as well as to reduce θ. The former

would require policy restrictions being placed on economic activities, whereas the
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latter would require putting in place safety measures so that the economic activities,

albeit at reduced level, can be performed safely while keeping the spread of infection

at check.

In case E3 is locally stable (i.e. can be attained), we can perform comparative

static exercise on E3 to find that

∂ȳ3

∂κ
=

γ (θ − η)

(κθ − γη)2
> 0 (17)

∂ȳ3

∂θ
= −

κ (κ− γ)

(κθ − γη)2
< 0 (18)

∂ī3

∂κ
= −

θ (θ − η)

(κθ − γη)2
< 0 (19)

∂ī3

∂θ
=

η (κ− γ)

(κθ − γη)2
> 0 (20)

In other words, a combination of an increase in κ and a reduction in θ can achieve, in

addition to stability of E3, an increase in y and a reduction in i in the steady state. In

other words, non-pharmaceutical policy interventions can increase economic activities

and reduce the proportion of persons infected in the steady state.

4 Conclusions

We can summarize the discussion in the previous sections as follows: at the onset

of the pandemic, the first policy response might be to fully control the pandemic and

attain the ‘Good Health Equilibrium’. This might require policy interventions to keep

θ low, i.e. undertake safety measures while performing economic activities to prevent

the spread of infection. In case of a highly infectious disease like COVID-19, this might

not be adequate to keep θ low. If this is the case (i.e. if E2 is not stable), then there

need to be additional policy interventions, in the form of restrictions on economic

activities, to increase κ in order to ensure that (a) the non-trivial equilibrium, E3

exists in the positive quadrant, and (b) is stable. The first would require keeping

κ high enough to exceed γ, i.e. impose restrictions on economic activities which are

strong enough to keep up with the natural rate of growth of infection, while the second

would require a combination of high κ and low θ. In short, preventing an explosion

in infection as well as a collapse in economic activities would require a combination

of two types of non-pharmaceutical policy interventions, firstly, safety measures at

workplace and other public places so that economic activities can be conducted safely

without spreading infection; and secondly, some form of restrictions on economic

activities. Typically, any one of these in isolation will not be enough to prevent either

an explosion in infection or a collapse in economic activities.
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A failure to control the progress of the pandemic in the manner outlined above

might lead to two kinds of adverse dynamic outcomes: it might either result in explo-

sive dynamic outcomes leading to uncontrolled spread of the pandemic (resulting in

massive loss of human lives) or there might be cyclical trajectories from Andronov-

Hopf bifurcation resulting in repeated waves of infection and very short-run cycles of

fluctuations in economic activities. The stylized facts shown in figure 2 of section 1

might be a possible outcome of such dynamic processes. Continuation of such cyclical

trajectories would result in substantial welfare losses, both in terms of loss of human

lives to infection as well as loss of livelihood from widespread economic displacement

due to such short-run fluctuations in economic activities.

Finally, we should be careful in mechanically interpreting the policy recom-

mendations of our model in terms of increase in κ and reducing θ. We have already

discussed above the limits of reducing θ beyond a certain level, given that θ is to some

extent determined by the epidemiological dynamics of the specific disease beyond the

control of the policymaker. In case of a highly infectious disease like COVID-19, it

might not be possible to reduce θ beyond a certain point at least in the short-run. At

the same time, there might be political limits on increasing κ as it involves restric-

tions on economic activities. It might not be politically feasible for any government

or the policymaker to increase κ beyond a point as the immediate impact of this in

the form of loss in livelihood of workers, as well as damage to the business interests

might result in political pressure on the government to reverse these policies. In ad-

dition, we should also note that we have no particular reason to assume that either

of the steady states, E2 and E3 represent a socially or politically desirable level of

economic activities. If the steady state level of economic activies, y fall short of its

socio-politically desired level (for instance, in case it is associated with a larger than

desired rate of unemployment) then the policymakers might be tempted to expand

economic activities, which might act as a further disincentive to impose restrictions

during pandemic, destabilizing the resulting dynamics further.

In the long-run, therefore, prevention of the pandemic might require advanced

planning prior to the onset of the pandemic, putting in place public health infrastruc-

ture as well as institutional mechanism to protect livelihoods at times when economic

activities need to be curtailed to prevent the spread of pandemic. In a globalized

world, where international travel contributes to spread of the pandemic, this might

also require international cooperation among countries to jointly put in place an insti-

tutional infrastructure to enable this. The simplified model presented here is not in a

position to incorporate many of these factors. We plan to take up some of these issues

in future extensions of this work. The simple model presented here, therefore, might

be looked upon as a preliminary enquiry into the dynamics of interaction between

the epidemiological processes underlying the COVID-19 pandemic and the macroeco-

nomic processes which affect the policy interventions to control the pandemic.
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