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Abstract

This paper attempts to examine the impact of introducing limited arbitrage
in a purely deterministic continuous-time model of exchange rates with bound-
edly rational agents having heterogeneous expectations. The rate of exchange
depends on a combination of fundamental factors and speculative behavior by
heterogeneous agents in foreign exchange markets. However, given that our
focus is primarily on speculators, we keep the determination of fundamentals
outside the scope of our model. We find that unlike popular perception in the
literature, introduction of limited arbitrage does not necessarily increase the
possibilities of deviation from the fundamentals. In fact, under certain situa-
tion limited arbitrage might increase the stability of the fundamental equilib-
rium.
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1 Introduction

A substantial literature has emerged in recent times, which seeks to explain
exchange rate dynamics due to presence of agents with heterogeneous expecta-
tions. This rising interest has been partly motivated by certain empirical time
series properties of exchange rate dynamics. Traditional models of exchange rate
have performed rather poorly in explaining several real life empirical trends. A
substantial part of time-series of exchange rates remain unexplained by econom-
ical fundamentals, irrespective of the specific theoretical model used to arrive at
the these fundamentals [See, for instance, (Lyons 2001)]. In fact, Meese & Ro-
goff (1983) showed that a random walk model outperforms most standard open
economy macroeconomic models in explaining exchange rate dynamics. Real life
time-series of exchange rate also shows a substantial volatility, much in excess of
fundamental factors, and non-normality, fat tails and power-law behavior which
could not be explained by the traditional models of exchange rates which relied
on fundamentals alone. This gave rise to a substantial literature on models of ex-
change rate with boundedly rational agents having heterogeneous expectations. A
reasonably exhaustive discussion of this literature might be found, among other
places, in de Grauwe & Grimaldi (2006).

One of the early influential models of exchange rate with heterogeneous agents
was Frankel & Froot’s (1986) attempt to explain the movement of US dollar in the
1980s. This consisted of boundedly rational agents, consisting of fundamental-
ists who believe in Dornbusch’s (1976) overshooting model, chartists or technical
analysts who believe that exchange rate follows a random walk, and portfolio man-
agers who form their expectations as a weighted average of the fundamentalists and
chartists. They found that the portfolio managers, under linear learning dynamics,
learn more slowly about the model than they change it, leading to deviation from
the fundamentals and emergence of bubbles in foreign exchange. Chiarella, He &
Zheng (2013) modified Frankel & Froot’s (1986) model by introducing nonlineari-
ties in the learning dynamics of the portfolio managers and showed several complex
dynamical possibilities.

Learning dynamics of the portfolio managers, however, is not the only reason
why there might be deviation of the exchange rate from its fundamentals. Shleifer
& Vishny (1997) showed, for instance, that as long as the arbitrage is conducted
by professional arbitrageurs by pooling resources from outside investors with little
knowledge of the market, the ability to conduct arbitrage will be limited by capital
constraints arising from agency problems. This might lead to a deviation of the
exchange rate from its fundamentals, creating bubbles, leading to a violation of the
efficient market hypothesis.

In light of the above literature, the objective of our paper is to examine the
effect of limited arbitrage on the speculative activities in foreign exchange mar-
ket, where the agents are boundedly rational agents and have heterogeneous ex-
pectations. We begin with a benchmark model, conisting of a simplified version



of Chiarella et al. (2013). Since our focus is on speculative activities, like Westerhoff
(2003) and Westerhoff & Reitz (2003) we focus primarily on the speculators. We
assume that fundamentals are exogenously given and do not change in the period
under consideration. Unlike Chiarella et al. (2013), we do not include nonlinearities
in the learning dynamics of portfolio managers. We then introduce limits of arbi-
trage to examine whether this validates the Efficient Market Hypothesis (EMH).

2 The Model

The model developed in the following sections is similar to the one in Chiarella
et al. (2013). We consider a model of exchange rate dynamics where the exchange
rate is determined by a combination of fundamental factors and speculative activ-
ities by heterogeneous agents. Let E⋆ be the fundamental value of the exchange
rate, E, (defined as the number of units of domestic currency per unit of for-
eign currency). Unlike Chiarella et al. (2013), and in line with Westerhoff (2003)
and Westerhoff & Reitz (2003), our focus is on the speculative dynamics. Hence,
we do not explicily model the determination of E⋆ in our current model – it might
either be determined by purchasing power parity, or by interest rate parity con-
dition. If the exchange rate exceeds (falls short of) its fundamental value, i.e. if
the domestic currency is undervalued (overvalued), then by increasing (decreasing)
the competitiveness of domestic producers, the real part of the economy imparts a
downward (upward) pressure on the rate of exchange.

However, the exchange rate also depends on the speculative trading of foreign
currency or assets in the financial markets. Following standard literature in this
area1, there exists two categories of traders in the foreign exchange markets:

1. Fundamentalists, whose expectations follow a mean-reverting process to the
fundamental value, E⋆, i.e.

Ẋf = βf (E
⋆
− E −Xf ) (1)

where Xf refers to the expected rate of depreciation of the spot exchange
rate by the fundamentalists, and βf ∈ [0,∞] is the speed of adjustment of
the expectations by the fundamentalists; and

2. Technical analysts or chartists, who believe that the change in the log-exchange
rate (LER) follows a declining weighted average of past changes of exchange
rate, i.e.

Xc (t) = βc

∫ t

−∞

e−βc(t−s)dE (s)

⇒ Ẋc = βc

(

Ė −Xc

)

(2)

where Xc refers to the expected rate of depreciation of the spot exchange rate
by the technical analysts, and βc ∈ [0,∞] is the speed of adjustment of the
expectations by the technical analysts.

1See, for instance, de Grauwe & Grimaldi (2006)



Let 1 − w and w be the weightage of fundamentalist and chartist trading
practices respectively, where w ∈ [0, 1]. We can either interpret 1−w and w as the
proportion of fundamentalist and chartist traders in the foreign exchange market,
or alternately, following Frankel & Froot (1986) and Chiarella et al. (2013), consider
a group of portfolio managers who control trading in the foreign exchange markets,
and assign a weight of w and 1 − w to the technical analyst and fundamentalist
analysts respectively.

The rate of exchange, as mentioned above, depends on both fundamental
factors as well as speculative activities in the financial markets. Let βs and βr
represent the rates at which the exchange rate responds to speculative activities
(weighted average of expectations of both types of agents) and fundamental factors
respectively, with βs, βr ∈ [0,∞], i.e.

Ė = βs [(1− w)Xf + wXc] + βr (E
⋆
−E) (3)

Substituting from (3) into (2), we get

Ẋc = βc [βs (1− w)Xf − (1− βsw)Xc + βr (E
⋆
− E)] (4)

The complete dynamical system, therefore, might be described by the following
system of differential equations:

Ẋf = βf (E
⋆
− E −Xf ) (5a)

Ẋc = βc [βs (1−w)Xf − (1− βsw)Xc + βr (E
⋆
− E)] (5b)

Ė = βs [(1− w)Xf + wXc] + βr (E
⋆
− E) (5c)

Before we proceed to analyze the complete model, we begin by looking at two
special cases: first, where all agents are fundamentalists, i.e. w = 0; and second,
where all agents are chartists, i.e. w = 1.

2.1 Model with only fundamentalist traders

Consider a model with only fundamentalist traders, i.e. w = 0. In this case, (5)
reduces to the following dynamical system:

Ẋf = βf (E
⋆
− E −Xf ) (6a)

Ė = βsXf + βr (E
⋆
− E) (6b)

The above system represented by (6) has only one steady state, representing the
fundamental steady state, given by (0, E⋆). The jacobian computed at the funda-
mental steady state is given by

J =

[

−βf −βf
βs βr

]

so that the trace, −βf−βr < 0 and determinant, βfβr+βfβs > 0, i.e. the fundamen-
tal steady state, (0, E⋆) is locally stable from an application of the Routh-Hurwitz



Figure 1: Model with only fundamentalists: phase diagram

condition for stability. In other words, the long-run dynamics will converge to the
fundamental steady state, and the Efficient Market Hypothesis holds. The eco-
nomic intuition is simple: if all agents believe in the fundamental steady state,
then their collective trading action will eventually put the economy back to the
fundamental steady state.

2.2 Model with only chartist traders

Next, we consider a model with only chartists, i.e. w = 1. In this case, (5) is
reduced to the following dynamical system:

Ẋc = βc (βs − 1)Xc + βcβr (E
⋆
− E) (7a)

Ė = βsXc + βr (E
⋆
− E) (7b)

Once, again, the above system represented by (7) has only one steady state, repre-
senting the fundamental steady state, given by (0, E⋆). However, depending on the
magnitude of the parameter βs, representing the sensitivity of the exchange rate to
speculative activities by chartist traders, two distinct scenarios emerge. Next, we

Figure 2: Model with only chartists

check for local stability of the fundamental equilibrium using the Routh-Hurwitz



condition. The jacobian computed at the fundamental steady state is given by

J =

[

βc (βs − 1) −βcβr
βs −βr

]

so that the trace, βc (βs − 1)− βr ≶ 0 for βs ≶ 1+
βr
βc

. The determinant, βcβr > 0.

In other words, the fundamental steady state is stable for low values of βs, the
sensitivity of the exchange rate to speculative trading by the chartists. If the trading
activities by the chartists are effective enough, the fundamental value becomes
unstable. This would be clearer from figure 3. In case 2 (represented by the figure
on the right hand side, where β2 < 1), the fundamental steady state is always locally
stable. In case 1 (represented by the figure on the left hand side, where βs > 1),
the fundamental steady state is stable only if βs < 1 + βr/βc. We also note that
for case 1, where βs < 1, the fundamental steady state undergoes Andronov-Hopf
bifurcation at βs = 1 + βr/βc. Subject to the satisfaction of non-degeneracy and
tranversality conditions, a unique limit cycle would emerge as βs passes through
critical value. Numerical examples with all the three dynamical possibilities are
shown below in figure 3.

2.3 Model with both fundamentalist and chartist traders

Next, we consider the full model represented by (5), consisting of both fun-
damentalist and chartist traders. We find that the dynamical system represented
by (5) will have exactly one steady state given by the fundamental steady state
(0, 0, E⋆). The jacobian computed at the fundamental steady state is given by

J =





−βf 0 −βf
βcβs (1− w) −βc (1− βsw) −βcβr
βs (1− w) βsw −βr





The characteristic equation is given by

λ3 + [βc (1− βsw) + βr + βf ]λ
2 + [βcβr (1− βsw) + βcβf (1− βsw) + βcβrβsw+

βfβs (1− w)]λ+
[

βcβfβr (1− βsw) + βcβfβrβsw + βcβfβ
2
sw (1− w)+

βcβfβs (1− w) (1− βsw)] = 0

(8)

To perform stability analysis, we apply the following version of the Routh-Hurwitz
condition, found in Flaschel (2009):

All of the roots of the characteristic equation λ3 + a1λ
2 + a2λ+ a3 = 0

have negative real parts if and only if the set of inequalities a1 > 0,
a3 > 0 and a1a2 − a3 > 0 is satisfied. [cf. Flaschel (2009, page 385, the-
orem A.5)]

We find that the fundamental steady state is locally stable if the following conditions
are satisfied:
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(c) βs = 2, Andronov-Hopf bifurcation
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(d) βs = 2, Andronov-Hopf bifurcation
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(e) βs = 2.5, system explodes
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Figure 3: Time-series and phase-plots of 100 iterations of numerical solution of
the model with only chartists with following parameter values: βf = 0.8, βc = 0.8,
βr = 0.8, E⋆ = 65, initial condition at (0.5, 66). βs is used as bifurcation parameter.

a1 = βc (1− βsw) + βr + βf > 0

⇔ w <
1

βs
+

βr + βf
βsβc

(9)



a3 =
[

βcβfβr (1− βsw) + βcβfβrβsw + βcβfβ
2
sw (1− w)+

βcβfβs (1− w) (1− βsw)] > 0

⇔ βcβfβr + βcβfβs (1− w) > 0 which holds true since w < 1 (10)

a1a2 − a3 = [βc (1− βsw) + βr + βf ] [βcβr (1− βsw) + βcβf (1− βsw)+

βcβrβsw + βfβs (1− w)]− [βcβfβr (1− βsw) + βcβfβrβsw+

βcβfβ
2
sw (1− w) + βcβfβs (1− w) (1− βsw)

]

> 0

⇔ w < w̄1 or w > w̄2 (11)

where w̄1 and w̄2 are the roots of the quadratic equation a1a2 − a3 = 0, expressed
in terms of w. From (9), (10) and (11), we have w < w as a sufficient condition2

for local stability of the fundamental steady state, where

w = min

[

1

βs
+

βr + βf
βsβc

, w̄1, 1

]

In other words, the fundamental steady state is stable, as long as the proportion of
speculators deviating from fundamentalist or rational expectations does not exceed
a limit. As long as there are enough agents holding fundamentalist expectations,
fundamental steady state is stable.

We also note that w depends inversely on βs. In other words, more the
influence of speculative trading activities on the exchange rates, less is the room for
the proportion of agents allowed by the system to deviate from rational expectations
without destabilizing the system.

A number of possibilities emerge in case the fundamental steady state gets
destabilized. Note that

a2 = [βcβr (1− βsw) + βcβf (1− βsw) + βcβrβsw + βfβs (1− w)]

⇔ w <
1

1 + βc
+

βcβr + βcβf
βsβf (1 + βc)

(12)

Therefore, the fundamental steady state undergoes a Hopf bifurcation as the control
parameter, w, representing the proportion of chartists, passes through w. Subject
to the non-degeneracy and transversality conditions being satisfied, a unique limit
cycle emerges at this point.

Numerical examples of the above possibilities are shown below in figure 4.

2The sufficient condition will also be necessary condition, provided w̄2 ≥ min

[

1

βs

+
βr + βf

βsβc

, 1

]
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(c) w = 0.25, Hopf bifurcation
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(d) w = 0.25, Hopf bifurcation, limit cy-
cle

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005

x 10
4

−3

−2

−1

0

1

2

3
x 10

7

 

 

Xf

Xc

E

(e) w = 0.3, system explodes
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Figure 4: Time-series and phase-plots of 10000 to 10050 iterations of numerical
solution of the model with both fundamentalists and chartists, with following pa-
rameter values: βf = 2, βc = 2, βr = 0.5, βs = 5, E⋆ = 65, initial condition at
(0, 0, 0). w is used as bifurcation parameter.



Finally, if either of the two classes of agents, fundamentalists and chartists,
fail to adjust their expectations according to their respective rules of adjustment,
so that either βc or βf (but not both) are zero, then we have an interesting situ-
ation where a3 = 0, while a1, a2 > 0. This would represent an emergence of fold
or saddle-node bifurcation. The literature on bifurcation theory suggests that this
might open up several dynamical possibilities, including generation of multiple ho-
moclinic orbits, disappearance of saddle-nodes through Shil’nikov bifurcation lead-
ing to complex dynamics due to generation of an infinite number of saddle-periodic
orbits. A detailed discussion of these possibilities might be found in Kuznetsov
(1997, chapt. 3 & 6). A simple numerical example of such complicated behavior is
provided below in figure 5.
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(a) Time-series of saddle-node bifurcation
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cation

Figure 5: Saddle node bifurcation occurs when βc = 0, i.e. chartists fail to adjust.

3 Limited arbitrage in foreign exchange markets

In the previous sections, we have assumed the proportion of fundamentalist
and chartist traders (or alternately, weights assigned by the portfolio managers to
these two forms of analysis), w, to be exogenously given. In this section, we attempt
to endogenize w. For this purpose, we consider a simple model of limits to arbitrage
in the lines of arguments found in Shleifer & Vishny (1997).

Shleifer & Vishny (1997) points out that the model of arbitrage implicit in
standard models like the one found in Fama (1970) assumes a market with very
large number of tiny arbitrageurs, each taking a position against mispricing against
variety of markets. Since each position is small, capital constraints are not binding
and each arbitrageur is effectively risk-neutral toward each trade. Their collective
actions drive prices towards fundamental values. However, in a market where ar-
bitrage is conducted by relatively few professional investors (both fundamentalists
and chartists) who pool in resources from outside investors with little knowledge
of the markets (either in the form of borrowing or investments in portfolios, say, in



the form of mutual funds), standard agency problems might arise. The ability of
the professional traders to conduct arbitrage in this case will be limited by capital
constraints. This will be particularly evident if the markets are grossly mispriced,
leading to the fundamentalist trading position consistently resulting in losses. In
a world without capital constraints, eventually the fundamentalists would recover
their losses once the prices come back to fundamentals; however, capital constrain-
sts might force fundamentalists to switch their positions much before this happens,
resulting in the markets continuing to be mispriced.

We should note that the above argument goes against the interpretation of
limits to arbitrage made by de Grauwe & Grimaldi (2006). They argued that a
greater deviation of prices from their fundamentals would make the fundamen-
talist trading strategy less risky. However, this argument is based not on limits
of arbitrage due to agency constraints per se, but on the lack of accuracy of the
speculators in measuring the true value of the fundamentals. In other words, the ar-
gument is primarily based on imperfect information. We, on the other hand, argue
that borrowing constraints make the fundamentalist trading strategy more risky
during periods of larger deviation from fundamentals, since the uninformed outside
investors (either lenders or mutual fund investors) face large short-run losses. In
this sense our formulation is closer to Shleifer & Vishny (1997) than the one posed
by de Grauwe & Grimaldi (2006).

In light of above arguments, let us model the ratio of fundamenlists to
chartists in the following manner:

w

1− w
= a (E − E⋆)2 (13)

In other words, this ratio is a quadratic function of the absolute deviation of the
exchange rates from their fundamentals.

We should note that the above formulation makes a fundamental distinction
between the two kinds of agents in the market. The chartists trading strategy is
based on realized profits, and hence, face a less severe financial constraint compared
to the fundamentalists whose ability to arbitrage depend on their ability to finance
their trading strategy.

From (13), we have

w =
a (E⋆

− E)2

1 + a (E⋆ − E)2
, and (14)

1− w =
1

1 + a (E⋆
− E)2

(15)

representing the proportion of chartists and fundamentalists (or alternately, the
weightage assigned by the portfolio manager to technical analysis and fundamen-
talism) respectively. Note that at its fundamental value, E = E⋆

⇔ w = 0, i.e.
the chartists disappear when the economy attains the fundamental steady state.
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Figure 6: Limits to arbitrage

Next, we endogenize the proportion of technical analysts in the market using
the above relation. Substituting for w in (5), we get the following dynamical system:

Ẋf = βf (E
⋆
− E −Xf ) (16a)

Ẋc = βc

[

βs

1 + a (E⋆ −E)2
Xf −

1 + a (1− βs) (E
⋆
− E)2

1 + a (E⋆ − E)2
Xc + βr (E

⋆
− E)

]

(16b)

Ė =
βs

1 + a (E⋆
− E)2

[

Xf + a (E⋆
− E)2 Xc

]

+ βr (E
⋆
− E) (16c)

The dynamical system represented by (16) will have four steady states, one of
which is the fundamental steady state represented by (0, 0, E⋆).

We first examine the fundamental steady state, (0, 0, E⋆). Recall that at this
steady state, w = 0, i.e. the chartists completely disappear from the system at the
fundamental steady state. The jacobian computed at the fundamental steady state
is as follows:

J =





−βf 0 −βf
βcβs −βc −βcβr
βs 0 −βr





The characteristic equation is given by

λ3 + (βc + βf + βr)λ
2 + (βcβf + 2βcβr + βs)λ+

(

β2
cβr + βcβs

)

= 0 (17)

Applying Routh-Hurwitz criterion for stability, we find that the fundamental steady
state is always locally stable. Comparing with the benchmark model, we find that
introduction of limited arbitrage seems to increase the stability of the fundamental



equilibrium. In other words, unlike what Shleifer & Vishny (1997) expected, intro-
duction of limited arbitrage to our benchmark model seems to strengthen efficiency
market hypothesis.

Even though this result is contrary to much of the literature on limits of
arbitrage, it is not altogether surprising. Note that given the way we modeled
limits of arbitrage, chartists keep switching to fundamentalism as the exchange
rate moves closer to the fundamental steady state. This creates a tendency for
exchange rates to converge to the fundamental steady state, where all chartists
have already switched to fundamentalism.

However, we should note that unlike the benchmark model, we now also
have four other non-fundamental steady state. An application of Routh-Hurwitz
condition shows that these non-fundamental steady states are conditionally stable.
The actual dynamics, therefore would depend on initial conditions. Again, this is
not surprising. As we move away from fundamental steady state, fundamentalists
face capital constraints and are forced to switch to technical analysis. This creates
condition for further deviation from the fundamentals.

The above point will be clearer from the following numerical example in fig-
ure 7. In figure 7a and 7b, starting from an initial point sufficiently close to the
fundamental steady state, the solution converges to the steady state. However, in
figures 7c and 7d, starting from an initial point slightly further from the fundamen-
tal steady state, the solution does not converge to any state and instead explodes.

In other words, as long as one is adequately close to the fundamental steady
state, the solution converges to it. However, for any perturbation which is not close
enough to the fundamental steady state, the solution explodes (like a bubble) and
does not converge to the steady state. The economic intuition behind this should be
quite clear: for small perturbations away from the steady state, the fundamentalist
arbitrageurs are able to conduct arbitrage to bring back the solution to the funda-
mental equilibrium; however, for larger perturbations, their ability to arbitrage is
limited by their ability to finance the arbitrage which becomes increasingly difficult
due to agency problem.

4 Concluding Remarks

We considered a series of models in this paper, where the exchange rate depends
on a combination of fundamental and speculative factors. The first set of models
have the proportion of fundamentalists and chartists given exogenously. We find
that in the presence of only fundamentalists, the solution converges to the steady
state, whereas in the presence of only technical analysts or chartists, the solution
might either converge to the steady state, or diverge away from it or move around
it in the form of a limit cycle. The exact outcome will depend on the speed of
adjustment of the chartist speculators.
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point

−20

−15

−10

−5

0

5

x 10
101

0

1

2

3

4

x 10
102

0

1

2

3

4

5

x 10
102

Xf
Xc

E

(d) Phase diagram with (0.5, 0.5, 63) as
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Figure 7: Numerical solution to (16) from alternative initial points, with follow-
ing set of parameter values: βf = 2, βc = 0.5, βr = 0.5, βs = 5, E⋆ = 65,
a = 0.5. Steady states are given by (0, 0, 65) or the fundamental equilibrium, and
(−4.9174, 0.9391, 69.9174), (4.9174,−0.9391, 60.0826), (−1.3489, 1.7658, 66.3489)
and (1.3489,−1.7658, 63.6511).

In the presence of both fundamentalist and chartist speculators, the outcome
depends on the proportion of chartist speculators. As the proportion of chartist
speculators cross a threshold limit, the steady state changes from stable to unstable
via Hopf bifurcation, leading to emergence of limit cycles. In other words, presence
of a large number of chartists exceeds a certain threshold, they are able to pull an
economy away feom fundamental equilibrium. There are also possibilities of more
complicated dynamics emerging from this setup.

The most important contribution of this paper, however, as been a re-interpretation
of limits of arbitrage, of Shleifer & Vishny (1997) within the heterogeneous agent
model. We find that introduction of limits of arbitrage, in some sense, has a sta-



bilizing impact on the fundamental equilibrium. This is because, for small per-
turbations from the fundamental equilibrium, the switching of agents from fun-
damentalism to chartism ensure a quick return to the fundamentals. For larger
perturbations, however, limits of arbitrage starts getting stronger, leading to fun-
damentalist speculators switching to chartism, leading to the solution not returning
to its fundamentals.

We must, however, point out that a complete understanding of the nature of
the dynamics would require a more detailed look at the non-fundamental steady
states, so that we can precisely point out exactly when does the solution stops
converging the fundamental steady state. A more realistic model should also in-
corporate some stochastic noise into the model to analyze the how soon the system
reverts to the mean. Introduction of such noise will also provide us with a more
realistic time-series. We leave these these as possible areas for future research.
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