Department of Mathematics Faculty of Mathematics & Computer Science M.Sc. (Applied Mathematics), 3rd Semester

Course	AM 304(d)
Code	
Course Title	Dynamical Systems
Course	04
Credits	

Course objectives:

Learn and use various tools for the analysis and control of nonlinear systems. Know and play with a wide variety of interesting, inherently nonlinear examples. Learn how to study complexity of nonlinear systems.

Minimum pre-requisites:

AM 102: Numerical Analysis & Methods AM 103: Ordinary Differential Equations & Applications AM 202: Numerics of Ordinary Differential Equations

Course structure:

Linear dynamical systems: Introduction and preparatory material, linear versus nonlinear systems, equilibria, diagonalization, Jordan canonical form, stability, stable, unstable, and center subspaces, non-homogeneous systems; Solutions of nonlinear dynamical systems: Preliminary concepts, solutions of initial value problems, existence and uniqueness of solutions, continuous dependence on initial conditions and parameters, Linearization methods flows. classical examples. for nonlinear dynamical systems: Linearization, invariant manifolds, stable, unstable and center manifolds, Hartman-Grobman theorem; Lyapunov stability theory for nonlinear dynamical systems: Lyapunov functions, Lie derivative, stability and instability theorems, LaSalle Invariance Principle, exponential stability; Global theory of nonlinear dynamical systems: Periodic orbits, limit cycles, attractors, Poincar'e-Bendixon theorem, Poincar'e maps, index theory, examples: harmonic oscillator, Duffing's equation, and Lotka-Volterra predator-prey model; Bifurcation theory for nonlinear dynamical systems: Bifurcations of vector fields, saddle-node,

transcritical, pitchfork and Hopf bifurcations, codimension of a bifurcation, stability under perturbations, structural stability, Euler's buckling beam and van der Pol oscillator.

Reading Suggestions:

- Differential Equations and Dynamical Systems, 3rd Edition, 2006, L Perko.
- Differential Dynamical Systems, 2007, James Meiss, SIAM.
- Dynamical Systems with Applications using Maple 2nd Ed, 2010, Stephen Lynch, Springer.
- Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2003, Stephen Wiggins, Texts in Applied Mathematics, Springer.

Evaluation and weightage:

•	Com	pute	r As	ssigni	ment 1	:10%
	~					4 0 0 /

- Computer Assignment 2 :10%
 Lab :10%
- Lab :10%
 Mid Term Exam :30%
 End Term Exam :40%