Department of Mathematics Faculty of Mathematics & Computer Science M.Sc. (Applied Mathematics), 3rd Semester

Course	AM 303
Course	AM 505
Code	
Course Title	Cryptography
Course	04
Credits	

Course objective:

The objective of the course is to provide a basic understanding of the modern encryption system. The course provides an introduction to basic number theory, symmetric and asymmetric cryptosystem.

Minimum Pre-requisites:

Course structure:

Introduction and Mathematical Foundations

Introduction, Overview on Modern Cryptography, Number Theory, Probability and Information Theory.

Classical Cryptosystems

Classical Cryptosystems, Cryptanalysis of Classical Cryptosystems

Symmetric Key Ciphers

Symmetric Key Ciphers, Modern Block Ciphers (DES), Modern Block Cipher (AES), Cryptanalysis of Symmetric Key Ciphers, Linear Cryptanalysis, Differential Cryptanalysis

Asymmetric Key Ciphers

RSA, Diffie Hellman Key Exchange algorithm, ElGamal Encryption Algorithm, Elliptic Curve Cryptography, Digital Signatures.

Reading suggestions:

- Wenbo Mao, "Modern Cryptography, Theory& Practice", Pearson Education, 2003
- William Stalling, "Cryptography and network security: principles and practices", prentice hall fourth edition 2005
- Behrouz A. Forouzan, "Cryptography & Network Security", McGraw-Hill, 2008
- Bruce Schneier, "Applied CryptographyProtocols, Algorithms, and Source Code in C", John Wiley & Sons, second edition, 1996.

• Johannes Buchmann, "Introduction to cryptography", Springer Second Edition, 2004

Evaluation and weightage:

- Surprise Quiz / test 15 Marks
- Assignments 05 Marks
- Class attendance and interaction during class 5 Marks
- Mid Semester Examination 40 Marks
- End Semester Examination 40 Marks