Department of Mathematics Faculty of Mathematics & Computer Science M.Sc. (Applied Mathematics), 2nd Semester

Course Code	AM 205
Course Name	Mathematical Modelling & Simulations
Course	04
Credits	

Course objectives:

Understand nonlinear systems of differential equations through phase space analysis. Learn how to set up, analyze and interpret mathematical models. Learn how to communicate mathematical ideas in writing.

Minimum pre-requisites:

AM 102: Numerical Analysis & Methods AM 103: Ordinary Differential Equations & Applications AM 202: Numerics of Ordinary Differential Equations

Course structure:

INTRODUCTION TO MATHEMATICAL MODELLING: Mathematical modelling approaches, Modelling for decisionmodels. Some making; MODELING CONTINUOUS PROCESSES: Models of single populations: Exponential growth, Density dependent growth, Limited growth with harvesting, discrete population growth and chaos, Timedelayed regulation, interacting population models; partial differential equation models: diffusion process and diffusion models, wave propagation, heat flow.**PROBABILISTIC** MODELS: Discrete Probability Models, Continuous Probability Models, Stochastic models: Markov Chains, Markov Processes, Linear Regression.

Reading Suggestions:

- Mathematical Modelling with Case Studies 2nd Edition, Belinda Barnes and Glenn Robert Fulford.
- Mathematical Modeling, 4th Edition, Mark M. Meerschaert.
- Mathematical Modelling 1st Edition, D N P Murthy and N W Page.

• Handbook of Dynamic System Modeling, Paul A. Fishwick, Chapman & Hall/CRC Computer & Information Science Series.

Evaluation and weightage:

- Quiz 1 :10%
- Quiz 2 :10%
- Lab/Assignment :10%
- Mid Term Exam :30%
- End Term Exam :40%